(originally from tu'o and relevant to discussions of tu'o and lo'ei and similar creatures.)
I don't understand how the meaning of the bridi can be determined without quantifying over the underlying set, unless the set is one-membered. Perhaps the idea is simply that the quantifier is left unspecified so that it is glorked from context? That seems reasonable, but it's not equivalent to lo'ei (e.g. mi nitcu tu'o tanxe is not equivalent to mi nitcu lo'ei tanxe). --And
If we think of 'sets' as groups instead (collectivities, = Lojban 'masses'), then we can just refer directly to the set/group without quantifiying over its membership. Regarding your analysis of tu'o and lo'ei, I don't get it. lo'ei always seems to reduce to lo with a narrow scope within that of some implicit predicate. In other words, I think I have a rough idea of how lo'ei works, but I can't make sense of your and xorxes's analysis of its working. Maybe this discussion should move to the lo'ei page, if you're arguing that tu'o is equivalent to lo'ei. --And
I don't mean that lo'i broda is a group rather than a mathematical set. I mean that if we conceive of categories as *groups* of individuals, then we can either quantify over the membership, or refer to the group directly. (This is how lei/loi ought to work.) Regarding sisku, as I've been saying in the discussions on Jboske, I don't understand sisku tu'o ka ce'u broda except as a way of expressing troci tu'o du'u co'e lo broda, so for me the analogy with sisku does not help at all in explicating the notion of null quantification. I understand that lo'ei is supposed to "use the meaning of tanxe as expressed in the property le ka ce'u tanxe, and adds it to the predicate sisku", but I can't make sense of this. We haven't found any examples from English that don't reduce to lo (or loi'e). --And