Lojban
The Logical Language
Log in
Username:
Password:
I forgot my password |
CapsLock is on.
Log in
History: BPFK Section: Non-logical Connectives
View page
Source of version: 22
(current)
!Proposed definitions {BOX()} !! cmavo: jo'u (JOI) !!! Proposed Definition And. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { jo'u ''SUMTI'' }. !!! See Also !!! Proposed Keywords * and !!! Usage Examples ;.i mi jo'u la .clsn. cu ciksi tu'a lo cmavo be zo coi:''Me and Shoulson are explaining about the cmavo of selma'o COI.'' ;lo za'e tridu cu mixre lo tricu jo'u lo tcidu:''A 'treeder' is a mixture of a tree and a reader.'' {BOX} {BOX()} !! cmavo: ju'e (JOI) !!! Proposed Definition Vague connective. Joins two sumti into one sumti. The referent of the resulting sumti is some function of the referents of both sumti. More than two sumti may be joined into one sumti by chaining up additional { ju'e ''SUMTI'' }. !!! See Also !!! Proposed Keywords * vague connective !!! Usage Examples ;mi'a casnu zo jetnu ju'e zo fatci ju'e lo si'o jetnu ku ju'e lo si'o fatci:''We are discussing about "truth"/"fact"/truth/fact.'' (IRC, Eimi, 22 Dec 2008 07:40:19) ;.i ji'a co'e lo plise ju'e lo perli ju'e lo drata:''Also an apple and a pear.'' (IRC, xalbo, 5 Oct 2010 12:50:22) {BOX} {BOX()} !! cmavo: fa'u (JOI) !!! Proposed Definition Respectively. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and distributively in correspondence with another term. !!! See Also !!! Proposed Keywords * respectively !!! Usage Examples ;mi fa'u do klama lo zdani fa'u lo zarci:''Me and you go home and to the market, respectively.'' ;li pano fa'u li cinono cu jdima lo nu klama fu lo girzu karce fa'u lo vinji:''Ten and three-hundred are the prices of going by bus and by plane, respectively.'' {BOX} {BOX()} !! cmavo: joi (JOI) !!! Proposed Definition Non-distributive group. Joins two sumti into one sumti. The referents of the resulting sumti are the referents of both sumti considered jointly and non-distributively. More than two sumti may be joined into one sumti by chaining up additional { joi ''SUMTI'' }. !!! See Also * {gunma} !!! Proposed Keywords * both * together with * and !!! Usage Example ;mi joi ry. ze'a casnu lo lijda ctuca tadji:''Me and R have been discussing religious teaching methods.'' ;la .djan. joi la .pitr. cu re mei:''John and Peter are two.'' ;la jegvon cu cevni le xriso joi le xebro joi le muslo:''Jehovah is the god of the Christians, the Jews and the Muslims.'' {BOX} {BOX()} !! cmavo: ce (JOI) !!! Proposed Definition Joins two sumti into one sumti. The referent of the resulting sumti is the set whose members are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { ce ''SUMTI'' }. Thus, {X ce Y ce Z} creates one single set containing X, Y and Z. !!! See Also * {cmima} !!! Proposed Keywords * and (set) !!! Usage Examples ;.abu ce by ce cy vasru .abu ce by:''{a, b, c} ⊇ {a, b}'' {BOX} {BOX()} !! cmavo: ce'o (JOI) !!! Proposed Definition Joins two sumti into one sumti. The referent of the resulting sumti is the sequence whose members are the referents of both sumti considered jointly. More than two sumti may be joined into one sumti by chaining up additional { ce'o ''SUMTI'' }. !!! See Also * {porsi} !!! Proposed Keywords * and (sequence) !!! Usage Examples ;jukpa ce'o citka lo cersai co'o ru'e:''Making and eating breakfast, bye for now.'' ;.abu ce'o by cu mleca cy ce'u dy .ijo ge .abu mleca cy gi by mleca dy:''(a,b) ≤ (c,d) if and only if a ≤ c and b ≤ d'' {BOX} {BOX()} !! cmavo: jo'e (JOI) !!! Proposed Definition Union of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the union of the sets referred to by each sumti. More than two sumti may be joined into one sumti by chaining up additional { jo'e ''SUMTI'' }. !!! See Also !!! Proposed Keywords * union !!! Usage Examples ;lo'i brivla cu du lo'i gismu jo'e lo'i fu'ivla jo'e lo'i lujvo to po'o xu toi:''The set of brivla is equal to the union of the set of gismu and the set of fu'ivla and the set of lujvo (only?).'' {BOX} {BOX()} !! cmavo: ku'a (JOI) !!! Proposed Definition Intersection of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the intersection of the sets referred to by each sumti. More than two sumti may be joined into one sumti by chaining up additional { ku'a ''SUMTI'' }. !!! See Also !!! Proposed Keywords *Intersection !!! Usage Examples ;xy cmima .abu ku'a by .ijo ge xy cmima .abu gi xy cmima by:''x ∈ A ∩ B if and only if x ∈ A and x ∈ B.'' {BOX} {BOX()} !! cmavo: pi'u (JOI) !!! Proposed Definition Cross product of sets. Joins two sumti into one sumti. The referent of the resulting sumti is the set which is the cross product of the sets referred to by each sumti. !!! See Also !!! Proposed Keywords * Set Product * Cartesian Product !!! Usage Examples ;le'i bebna ku pi'u le'i mabla sidbo ku cu barda:''The cross product of the set of silly things and the set of bad ideas is large.'' {BOX} {BOX()} !! Formal definitions || __X__ ju'e __Y__ | = lo co'e be __X__ bei __Y__ __X__ jo'u __Y__ | = lo suzmei noi ge __X__ .e __Y__ me ke'a gi ro me ke'a cu me __X__ gi'a me __Y__ __X__ joi __Y__ | = lo gunma be __X__ .e __Y__ __X__ ce __Y__ | = lo se cmima be __X__ .e __Y__ .e no drata be __X__ .e __Y__ __X__ ce'o __Y__ | = lo porsi be fi __X__ jo'u __Y__ be'o noi __X__ lidne __Y__ ke'a __X__ jo'e __Y__ | = lo selcmi noi ro cmima be ke'a cu cmima __X__ .a __Y__ __X__ ku'a __Y__ | = lo selcmi noi ro cmima be ke'a cu cmima __X__ .e __Y__ __X__ pi'u __Y__ | = lo selcmipi'i be __X__ bei __Y__ ''sumti1'' fa'u ''sumti2'' ''sumti3'' fa'u ''sumti4'' ''selbri'' == ''sumti1'' ''sumti3'' ''selbri'' .i ''sumti2'' ''sumti4'' ''selbri'' || !! Notes # The definitions given correspond to their use as sumti connectives. Other uses (when they make sense) have yet to be added. !! Impact
About
Introduction
What Others Say
FAQ
Learning
Books
Vocabulary
Lojbanic Software
Community
Web/Email Forums
IRC Chat
Links
News
Dictionary
Swag
Multimedia
Lojbanic Texts
Audio
Wiki
Recent Changes
Popular Pages
How To Edit
The LLG
Official Projects
Publications
Donate!
Contact Us
Search Lojban Resources